

NHS Trust

30 day mortality after surgical resection of a brain tumour

Dr. Matt Williams

ICHNT & IC

On behalf of the NCIN Brain & CNS SSCRG

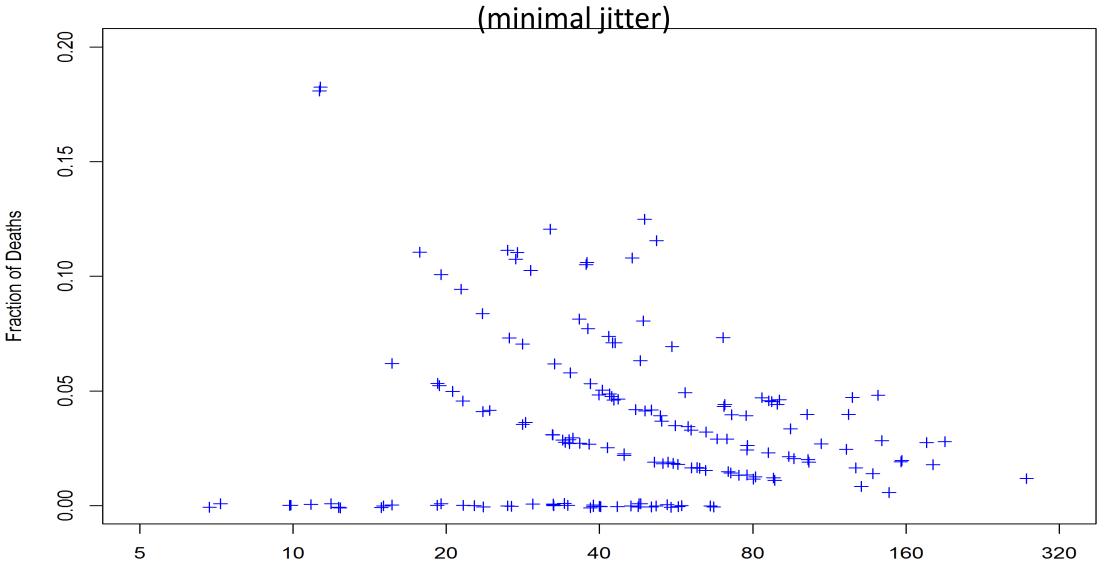
April 2016 Matthew.williams2@imperial.nhs.uk

Background

- Evidence of a "volume effect" in some surgery
 - Oesophagus, colorectal, cardiac
- Range of conditions
 - Cancer and non-cancer
- Range of outcomes
 - 30 day mortality, 5 year survival, delayed discharge, etc.
- Surgery is a key modality in the treatment of brain tumours
 - Curative (e.g. meningioma)
 - Prognostic benefit (e.g. GBM)

Brain Tumour Background

- Data in brain tumours all comes from the USA
- Shows that busier surgeons and centres both have better outcomes
- Difference in outcome by tumour types
- Nothing in Europe/ UK
- HC systems aren't the same in the USA and the UK
- Ideally everyone is operated on by a specialist
 - But some patients have to be operated on as an emergency
 - NICE guidance is to have 'specialised' surgeons >50% of their time


Methods

- All English patients with
 - An intracranial neoplasm (primary, met and pituitary)
 - Who had a craniotomy (or similar)
 - 2008 2010 (3 years)
 - Excluded Biopsy-only, spinal surgery
 - Only looked at most recent operation
 - Excluded surgeons <=6 operations, and not done one in the first and last 6 months of the period
 - Data from NCRS
 - Linked registry and HES data and vital status from PDS

Results

- 10888 patients in all
- 9194 (84%) patients and 163 surgeons (36%) in 30 trusts
- Predominantly brain & meninges
 - Other rare
- 30 day mortality was 3%
- Lowest surgical activity = 7 (2.3) (3yr/ annualised)
- Median number = 46 (15)
- Quartiles:
 - 7 29 (2.3 10)
 - 29-46 (10-15)
 - 46 70 (15 23)
 - 70 272 (23 91)
 - US: Busiest 10%: 11 29/ year

Enriched dataset, rescaled

Load

Results

- Age, deprivation and individual surgeon volume correlated with 30 day mortality
 - Patient sex & trust volume were not
- Same factors preserved on multivariate, on both step-forward and step-backwards analysis of factors
- RR for surgeon volume is 0.8, p = 0.0003
 - 20% relative risk reduction in 30 day death for doubling a surgeon's workload

Results

- Significant variation between trusts for 30 day mortality
 - But not volume related: 80% of trusts >100 cases
 - 0.95% 8.62% 30DM
- Predicted mortality (age, tumour type, surgery location & deprivation) is higher in busier surgeons

Discussion

- Little previous work on neurosurgical volumes and outcomes
 - Evidence for volume effect in SAH, aneurysm, trauma and MVD
 - Patient volumes may not be key:
 - Proxy for other services, sub-specialisation, staffing levels, etc.
- Limits to the data tumour location & co-morbidities

- There is a surgical volume effect
- There is probably not a centre volume effect

Study	Patient Group	Data source	Country	Ν	Annual Surgeon volume: Median (Upper quartile)	Annual Centre volume: Median (Upper quartile)	Surgeon effect	Centre Effect
Trinh, 2015	Supratentorial brain tumour (Biopsy and surgery)	NIS	USA	62 514	2·5 (6 − 29)	9.5 (20 – 142)	Y	Y
Barker, 2003	Acoustic Neuroma	NIS	USA	2643	5 (34)	19 (37 – 229)	Y	Y
Barker, 2003	Pituitary tumour (trans- sphenoidal)	NIS	USA	5497	3 (7 – 33)	10 (25 - 126)	Y	Y
Curry, 2005	Meningioma (craniotomy)	NIS	USA	15208	3 (6 – 39)	9 (18-82)	Y	Y
Barker, 2005	Supratentorial brain tumours (biopsy & resection)	NIS	USA	38028	NA	22 (45 – 264)	Y	Y
This study	Supratentorial tumours (resection only)	NCRS	England	9194	15 (23 – 91)	91 (152 - 222)	Y	Ν

Table 4: Previous Studies

Discussion

- Our findings are different to the US
- UK Centres and surgeons are busier
 - Probably appropriately centralised at a centre level
 - Probably not yet centralised enough at surgeon level
 - ~700 pts had surgery with a LVS over 3 years
 - Prevent ~25 deaths @ 30 days if we moved from LVS to '>= 1/week surgeons'
 - BUT: Most of the risk is from the diagnosis, not the surgery

Conclusions

- Centralisation is a thorny issue
- These data suggest some simple changes
- NICE guidance was published in 2006
- How do we implement it
 - Not trivial to do so
 - Have to avoid harms from delays

Thanks

- Peter Treasure & David Greenberg
- NCIN CNS SSCRG

	Total	Primary Brain	Meninges	Pituitary	Other CNS Primary	Secondary
Age						
0 - 9	390	364	6	5	7	8
10 - 19	387	342	14	11	6	14
20 – 29	553	458	64	7	13	11
30 – 39	875	631	204	8	9	23
40 - 49	1497	944	499	5	10	39
50 - 59	1878	1155	635	14	17	57
60 - 69	2247	1397	749	8	7	86
70 - 79	1212	703	452	5	1	51
80 +	155	40	98	0	2	15

Table 1: Patient and Tumour Characteristics by age

		Number of operations: Median (IQR)
Surgeon	Total	46 (29 – 70)
	Brain	28 (16 – 47)
	Meninges	13 (6 – 23)
	Pituitary	0 (0 – 0)
	Other CNS Primary	0 (0 - 1)
	Secondary Tumour	1 (0 – 3)
Centre	Total	272.5 (171-463)
	Brain	169 (106-327)
	Meninges	83·5 (22 - 154)
	Pituitary	2 (1 – 3)
	Other CNS Primary	1.5 (0 – 3)
	Secondary Tumour	8 (3 – 13)

Table 2: Surgeon and Centre Characteristics

Factor		Univariat e Analysis	N	Absolute Risk	Multivariate Analysis	
		P value			Relative risk	P value
Patient	< 30 yr	<0.0001	1330	1.35%	1	<0.0001
Age	30-<60		4250	2.33%	2.15	
	60-<70		2247	3.60%	3.45	
	70+		1367	5.85%	5.83	
Patient	1	0.0383	2012	2.34%	1	0.0116
Deprivatio	2,3,4		5816	3.03%	1.30	
n (IMD 2010 category)	5		1366	4.03%	1.85	
Site of	Brain	0.0344	6574	3.29%	1	0.0004
operation	Meninge s		2620	2.37%	0.59	
Patient sex	Male	0.2673	4700	3.21%	1	0.6720
	Female	4494 2.83% 0.95	0.95			
Surgeon	Doubling	0.0137	Q1: 739	4.6%	0.80	0.0025
Volume	in load		Q2: 1531	3.85%		
			Q3: 2278	3.07%		
			Q4: 4646	2.48%		

Table 3: Univariate and Multivariate analyses

	Hospital Leve	el	Surgeon Level*		
Volume Group (percentile)	Annual Caseload Category	No. of Patients	Annual Caseload Category	No. of Patients	
Total no.		62,514		36,125	
Quartile 1 (0–25th)	1–4	16,941	1	14,765	
Quartile 2 (26th-50th)	5–9	16,462	2	5195	
Quartile 3 (51st-75th)	10–19	14,131	3–5	8116	
Quartile 4 (76th-100th)	20-142	14,980	6–29	8048	
Top decile (90th-100th)	34–142	5109	11–29	3113	

APPENDIX TABLE 1. Annual volume of primary brain tumor resections for hospitals and surgeons

* Incomplete reporting in the data set.